Bachelor of Science in Mechanical Engineering
The Program Educational Objectives of the Mechanical Engineering Program at SDSU are to matriculate Bachelor of Science graduates who upon the years following graduation are committed to:
· Applying an open-minded, critical, and pragmatic approach to the analysis of problems and the design of innovative and sustainable engineering solutions in professional practice (Professional Practice).
· Actively participating in continuous professional development (Professional Development).
· Responsible, professional, and ethical conduct with a broad appreciation of the world and the role that engineering plays in society (Service and Citizenship).
Program outcomes are statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire in their matriculation through the program. We have a continuing assessment process in place in order to collect and interpret data to evaluate the achievement of program outcomes. The thirteen program outcomes for the SDSU Mechanical Engineering program are listed in the table below.
-
PO1: An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
-
PO2: An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
-
PO3: An ability to communicate effectively with a range of audiences
-
PO4: An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
-
PO5: An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
-
PO6: An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
-
PO7: An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
-
PO8: An ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations); to model, analyze, design, and realize physical systems, components or processes.
-
PO9: An ability to work professionally in either thermal or mechanical systems areas.
The undergraduate program in Mechanical Engineering is built upon a rigorous engineering science foundation that is, in turn, based upon a broad curriculum of natural sciences, mathematics, electives in General Education in humanities and social sciences, as well as professional electives in Mechanical Engineering. Although students are encouraged to concentrate their professional electives in a sub-field of interest in mechanical engineering (e.g., mechanics and materials, thermal sciences, or manufacturing) or bioengineering, there are no formal “tracks” within the sequence. For the academic year 2020-21, the Mechanical Engineering curriculum can be summarized in the following SDSU Major Academic Plan (MAP):
2020-21 SDSU Mechanical Engineering Major Academic Plan (MAP)
2021-22 SDSU Mechanical Engineering Major Academic Plan (MAP)
DISCLAIMER: Students choosing to graduate based on a certain catalog year are responsible for meeting all graduation requirements for that catalog year.
To see your MyMap for your catalog year, please visit the SDSU MyMap website
Major Preparation Courses
General Education [GE] Courses
Graduation Writing Assessment Requirement
Major courses consists of 48 upper division courses: ME 304 (or CIV E 301), 310, 314, 330, 350, 351, 360, 452, 490A, 490B, 495, 520, 555; AE 341, and 9 units of Professional Electives. These 9 units of coursework may be selected from any 400- or 500-level mechanical engineering course or approved courses from other departments. Please refer to your General Catalog for a list of approved elective courses.
If you have any questions or difficulties with these courses, you should contact your ME Faculty Adviser (see the list below).
The Master Plan is a summary sheet of course requirements and it provides an advising record for mechanical engineering students. Students are encouraged to see their advisor on a regular basis to:
- monitor progress toward the degree
- ensure taking courses in the proper order (see the Course Map)
- make adjustments to individual schedules as appropriate
- provide career guidance
Students are introduced to the Master Plan for the first time when they take ME 190
(Computer Aided Design). The instructor of ME 190 requires students to send a completed
Master Plan electronically to the ME Department Office ([email protected]) before the students are assigned
a final grade for the course.
It is highly recommended that Master Plans be submitted to the ME Department at the
end of each semester with updated grades. It is required that Master Plans be submitted electronically to the ME Department to register for ME-310 and ME-490A.
SUBMIT MASTER PLANS TO: [email protected]
In addition, as part of the ME curriculum students are required to take three professional
electives such as, ME 530, ME 552 , ME 580, ME 585, and ME 596. Before students register
for these classes it is recommended that they meet with an adviser. Meeting with an
adviser will ensure that students take professional electives that are beneficial
to their course of study and career objectives.
For general information about advising please check the Office of Advising and Evaluations website. You can find the Master Plan on Blackboard in Mechanical Engineering. You
can download your catalog year's (i.e., the year of your admission to the SDSU BSME
Program) Master Plan using the link below:
- 2021-22 BSME-Mechanical Systems Master Plan (DOC)
- 2021-22 BSME-Thermal Systems Master Plan (DOC)
- 2020-21 BSME Master Plan (DOC)
- 2019-20 BSME Master Plan (DOC)
- 2018-19 BSME Master Plan (DOC)
- 2017-18 BSME Master Plan (DOC)
- 2016-17 BSME Master Plan (DOC)
- 2015-16 BSME Master Plan (DOC)
- 2014-15 BSME Master Plan (DOC)
- 2013-14 BSME Master Plan (DOC)
- 2012-13 BSME Master Plan (DOC)
Failure to keep an updated Master Plan in the ME Department Office (E326) may result in delays in graduation. All course substitutions must be approved by the Department Chair.
Two integrated five year Bachelor’s-Master’s programs are available in the Department
of Mechanical Engineering. These programs are designed to give students the opportunity
to focus in a subfield of interest in either mechanical engineering (e.g., materials
processing, mechanics, MEMS, renewable energy, combustion), or bioengineering. Upon
successful completion of 160 units of coursework and a thesis, the students will be
simultaneously awarded the B.S. degree in mechanical engineering and either the M.S.
degree in mechanical engineering, or the M.S. degree in bioengineering.
Students can apply for admission to the BS/MS (4 + 1) degree programs when they have
successfully completed a minimum of 90 units or a maximum of 115 units. These units
must count towards one or the other of the two SDSU degree programs (BS or MS) that
will ultimately be awarded in the dual degree program. All students must have a satisfactory
score [minimum of 950 for combined verbal and quantitative on the Graduate Record
Examination (GRE) General Test] and a minimum overall GPA of 3.0. Interested students
should submit a signed Thesis Advisor Form and the BS/MS Application form following
the information and instructions given on the back of the Application.
NOTE: Those who are applying to the (4+1) BSME/MSME or BSME/MSBioE programs in the 2020-2021 academic year are not required to take the GRE exam. Potential applicants are requested to contact the Department Chair who will determine if the strength of the application without the GRE is adequate to make a decision on admission to the program.
You are required to have a Master Plan on file in the ME Office before you apply for the (4+1) BSME/MSME or BSME/MSBioE program. This plan will show the semester in which you are expected to complete the requirements for the BSME degree. If you matriculate into the (4+1) BSME/MSME or BSME/MSBioE program, you will be charged graduate tuition fees from the semester following the one in which you complete the requirements for the BSME degree as indicated in the Master Plan on file in the Office.
To satisfy the requirements for the BS/MS (4 + 1) degree programs, students must achieve
at least a 3.0 average in the 30 units of courses used to satisfy the graduate program
of study. Of the 30 units, a maximum of nine units may be in 500-numbered mechanical
engineering electives and all other program requirements must be satisfied. Three
500-level courses may be used to fulfill the elective requirements for the (4+1) BS/MS
degree program at the same time as serving as prerequisite courses for graduate study.
For the BS/MS (4 + 1) degree program leading to the B.S. and M.S. in Mechanical Engineering,
students can use any three 500-level ME courses toward their graduate degree. For
the BS/MS 4 + 1 degree program leading to B.S. in Mechanical Engineering and M.S.
in Bioengineering, students must take ME 580 and 585 for the biomechanics specialization;
ME 580, 540 or 543, and 585 for the biomaterials specialization. The bioinstrumentation
specialization is not open to students in the BS/MS (4 + 1) degree program leading
to B.S. in Mechanical Engineering and M.S. in Bioengineering. Students in the BS/MS
(4 + 1) degree programs must follow the thesis option. BSME students who satisfy the
requirements for the BS/MS (4+1) degree and are interested in applying to the program
should submit a completed BS/MS (4+1) Application Form and a copy of their Degree Evaluation to the ME Department. The application should
include thesis advisor's signature.
Particulate Material Science and Processing
- Fabrication Science Applied to Discrete Engineering Components
- Mechanics of Sintering
- Development of New Powder-Based Processing Approaches
- Mechanical Behavior of Particulate Materials
- Comutational Thermodynamics
- Microgravity Flame Research
- Wildfire Research
- Solar Energy
- Low-grade Thermal Energy Recovery
- Wind Turbine Blade Design based on Adaptive Motion
Micro-Electro-Mechanical Systems (MEMS)
- Polymer Solar Cells
- Bio-Nanoelectronics
- Inertial Sensors
- Microfluidics
- Computational MEMS
- UV and Extreme UV Lithography
- Hierarchical Manufacturing
- Powder-Based Approaches
Biomechanics
-
Biomaterials
-
Biomechanics
-
Design of Medical Devices
-
Neural Engineering
Note: A change in advisers will be periodically necessary due to faculty retirements, sabbatical leaves and the hiring of new faculty members.
Mechanical Engineering faculty advisers assist students with questions related to Upper Division major courses, elective courses, and career guidance.
A-Ap PROFESSOR A. BHALLA
Aq-Bo PROFESSOR A. BHATTACHARJEE
Br-Cha PROFESSOR J. CAMACHO
Che-De PROFESSOR S. KANG
Dh-Fl PROFESSOR P. KATIRA
Fo-Gra PROFESSOR K. MAY-NEWMAN
Gre-Ho PROFESSOR K. MOON
Hu-Ko PROFESSOR K. MORSI
Ku-Mal PROFESSOR P. NASERDINMOUSAVI
Mam-Mo PROFESSOR Z. NILI AHMADABADI
Mu-Pad PROFESSOR S.Y. PARK
Pae-Ren PROFESSOR E. TORRESANI
Reo-Sca PROFESSOR K. WOOD
Scb-Tal PROFESSOR W. XU
Tam-Vil PROFESSOR Y. YANG
Vim-Z PROFESSOR G.YOUSSEF
ME GRADUATE ADVISER:
PROFESSOR F. MILLER
BIOENGINEERING ADVISER:
PROFESSOR S. KASSEGNE
JOINT DOCTORAL ADVISER:
PROFESSOR T. GAROMA
GENERAL EDUCATION:
ACADEMIC ADVISING CENTER