Project Overview

The Class A RV industry is lacking innovation and quality with poor customer experiences. Recreational vehicles need a large Internal Combustion Engine (ICE) to propel the vehicle. ICE consume large amounts of fuel, they are inefficient, and pollute the environment. Our team has designed a four-wheel drive electrical drive system for a class A Recreational vehicle. Four Permanent Magnet AC electrical motors will power the vehicle. Electrical motors are more efficient than ICE, they are more reliable, cheaper to build, they are lighter and required minimal maintenance. These improvements will increase the durability and quality of the vehicle to give and overall greater customer experience.

Team F.E.R.V.

Ryan Sternberg
Team Leader
Energy Engineer

Justin Legaspi
Supply Engineer

Ramil Gapuz
RV Wall Engineer

Rene Navarro
Powertrain Engineer

Philip Alberti
Manufacturing Engineer

Systems Operation

The Fully Electrical RV (FERV) runs on electrical energy stored in the battery module. The battery is charge using the electrical grid via a charger by solar panels, and by regenerative braking. The controller takes power from the DC batteries and delivers it to the electrical motor. The inverter takes in the direct current from the battery pack and converts it into a maximum of 240V alternating current.

The four-wheel drive system configuration provides better vehicle stability since electric motors can accurately control individual wheel torque. The rapid dynamics of electrical motors, enables accurate control of wheel torque, thereby achieving better handling performance. This configuration also allows safety control systems such as collision avoidance, traction control, and vehicle stability control to perform faster, resulting in a safer vehicle.

Systems Engineering

AC Permanent Magnet Motor

Charge Port

Battery Pack & Thermal Pad

Major Components

Ford Eliminator Electric Motor
Peak Power: 210 KW
Peak Torque: 430 Nm
Gear Ratio: 9.05:1
Weight: 205 lbs

800V Battery Module
Panasonic 21700 Cells
Aluminum Heatsink
25ft: 667 kWh
5ft: +148 kWh

Solar Panels
Perovskite Panel
Up to 29% efficiency
Addition of 90kW/day
+5ft: +20kW/day

Wall Assembly

TEMPERATURE DIFFERENCE:
OUTSIDE: 100 F
INSIDE: ~74.4 F

NOISE DIFFERENCE:
OUTSIDE: 100 Db
INSIDE: ~82 Db

Vehicle Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ft</td>
<td>1017 lbs</td>
<td>284</td>
<td>384</td>
<td>267.5 kWh</td>
<td>90 kWh</td>
<td>350 miles</td>
<td>$588,000</td>
</tr>
<tr>
<td>30 ft</td>
<td>1200 lbs</td>
<td>305</td>
<td>406</td>
<td>315 kWh</td>
<td>100 kWh</td>
<td>415 miles</td>
<td>$614,000</td>
</tr>
<tr>
<td>35 ft</td>
<td>1393 lbs</td>
<td>326</td>
<td>435</td>
<td>364 kWh</td>
<td>110 kWh</td>
<td>475 miles</td>
<td>$640,000</td>
</tr>
<tr>
<td>40 ft</td>
<td>1586 lbs</td>
<td>347</td>
<td>469</td>
<td>412 kWh</td>
<td>120 kWh</td>
<td>535 miles</td>
<td>$665,000</td>
</tr>
<tr>
<td>45 ft</td>
<td>1779 lbs</td>
<td>368</td>
<td>498</td>
<td>461 kWh</td>
<td>130 kWh</td>
<td>595 miles</td>
<td>$691,000</td>
</tr>
</tbody>
</table>

Shown is the estimated vehicle specification per specified length. Class A RVs range from 25-45ft, thus increments of 5ft were chosen to simplify the customer experience. With this powertrain design, each vehicle will be able to reach a minimum of 350 miles per charge, and has sufficient solar power to supplement cabin power consumption. The usage of per wheel motors ensures capable performance to counteract the significantly higher vehicle weight.