

Luke Arnold - UCSD Machine Shop

Team Members

Alexis Oyawale Manufacturing Lead

Shayne Landis Quality Lead

Saray Robles Design Lead

Problem Statement

ASML Cymer has one of the most advanced EUV lithography system in the world creating MEMS devices on a new scale. They require a way to quickly attach and detach a vacuum viewport while still being able to maintain a vacuum seal of at least 10⁻² Torr. The design needs to be one handed for ease of use and should mount/release within 15 minutes or less. Additionally, a metrology load measuring 10 cm long with a mass of 1 kg should be able to mount easily.

Prototype Process

Initial Prototypes

The first prototypes, made of styrofoam, wood, and PLA, featured a custom inner groove to lock the top and bottom parts in place.

The early prototype testing lead to redesigns of both top and bottom parts

Final Designs

The final designs included counterbores to interface with the vacuum chamber's bottom plate. The inner groove lock was replaced and several o-ring grooves were added.

Quick Release for a Vacuum Viewport By Team V.O.I.D.

CAD Design - Exploded View

V002 - Top Plug

Design Analysis

Stress Analysis using applied maximum torque

The graph shows the relation

between the center of the added

mass to the maximum bending

stress. The position with the

stress yielded a minimum FOS

highest

of 6.17

amount of bending

Displacement Analysis using Maximum Torque

Soft Viton O-ring Analysis

SAN DIEGO STATE UNIVERSITY Dr. Scott Shaffar Julia Smitherman Nick Satterlee Mike Lester

Final Product

 Maximum bending stress (MPa)
 FOS Center of Mass (m)

ominal	Maximum
7.5	48.7
.27	0.27
2.8	13.8
.53	2.66

V001 Bottom Plate

V003

Top Plate

with Center

hole

V002 Top Plug

V003 Internal View

The final design for the viewport lock includes two separate top parts V001 and V002. Part V001 serves as a simple plug whereas V003 can be used to interface the viewport with any desired metrology. In order to ensure a vacuum seal of a minimum 10⁻² torr, three soft viton o-rings were used.

- Failed the alignment test
- Noted need for better finish

Test 2:

- Passed the alignment test
- Failed the vacuum test due to too large O-ring groove

Test 3:

- Passed the alignment test
- Passed the vacuum test

All tests were conducted at ASML-Cymer

Design Advantages

Exceeds requirements	 Holds a vacuum seal of ' Provides a 2.02 FOS
Fast	 Takes less than 10 second
Easy to use	 Can be locked and relea
Cost Effective	 Costs \$4,000 less than a

Test 1:

10⁻⁶ torr

nds to lock

ased single handedly

allotted budget

Spring 2020